
In today’s software marketplace, the
principal focus is on cost, schedule, and

function; quality is lost in the noise. This is
unfortunate since poor quality perform-
ance is the root cause of most software
cost and schedule problems. However, as
this article points out, there are proven
ways to address this problem. The first
step is adopting and demanding that ven-
dors follow these six principles of soft-
ware quality:
• Quality Principle No. 1: If a cus-

tomer does not demand a quality prod-
uct, he or she will probably not get
one.

• Quality Principle No. 2: To consis-
tently produce quality products, the
developers must manage the quality of
their work.

• Quality Principle No. 3: To manage
product quality, the developers must
measure quality.

• Quality Principle No. 4: The quality
of a product is determined by the
quality of the process used to develop
it.

• Quality Principle No. 5: Since a test
removes only a fraction of a product’s
defects, to get a quality product out of
test you must put a quality product
into test.

• Quality Principle No. 6: Quality
products are only produced by moti-
vated professionals who take pride in
their work.
These are not just theoretical princi-

ples, and almost any software group can
follow them, as demonstrated by the expe-
riences of many organizations with the
Software Engineering Institute’s (SEISM)
Team Software ProcessSM (TSPSM). All it
takes to start down this road is to recog-
nize and act on quality principle No. 1.

Quality Principle No. 1
If the customer does not demand a quality
product, he or she will probably not get one.

If you want quality products, you must
demand them. But how do you do that?
That is the subject of this article. I first

define quality, then I discuss quality man-
agement, and then third, I cover quality
measurement. Next I describe the meth-
ods for verifying the quality of software
products before you get them, and finally,
I give some pointers for those acquisition
managers who would like to consider
using these methods. That, of course, is
the most critical point; even when you
demand quality, if you cannot determine
that you will get a quality product before
you get it, you are no better off than you
are today – struggling to recover from the
effects of getting poor-quality products.

Defining Quality
Product developers typically define a qual-
ity product as one that satisfies the cus-
tomer. However, this definition is not of
much help to you, the customer. What you
need is a definition of quality to guide
your acquisition process. To get this, you
must define what quality means to you and
how you would recognize a quality prod-
uct if you got one.

In the broadest sense, a quality prod-
uct is one that is delivered on time, costs
what it was committed to cost, and flaw-
lessly performs all of its intended func-
tions. While the first two of these criteria
are relatively easy to determine, the third is
not. These first two criteria are part of the
normal procurement process and typically
receive the bulk of the customer’s and
supplier’s attention during a procurement
cycle, but the third is generally the source

of most acquisition problems. This is
because poor product quality is often the
reason for a software-intensive system’s
cost and schedule problems.

Think of it this way: If quality did not
matter, you would have to accept whatev-
er quality the supplier provided, and the
cost and schedule would be largely deter-
mined by the supplier. In simplistic terms,
the supplier’s strategy would be to supply
whatever quality level he felt would get the
product accepted and paid for. In fact,
even if you had contracted for a specific
quality level, as long as you could not ver-
ify that quality level prior to delivery and
acceptance testing, the supplier’s optimum
strategy would be to deliver whatever
quality level it could get away with as long
as it was paid.

Since, at least for software, most qual-
ity problems do not show up until well
after the end of the normal acquisition
cycle, you would be no better off than
before. I do not mean to imply that this is
how most suppliers behave, but merely
that this would be its most economically
attractive short-term strategy. In the long
term, quality work has always proven to be
most economically attractive.

Addressing the Quality
Problem
In principle, there are only two ways to
address the software quality problem.
First, use a supplier that has a sufficiently
good record of delivering quality products
so you will be comfortable that the prod-
ucts he provides will be of high quality.
Then, just leave the supplier alone to do
the development work. The second choice
would be to closely monitor the develop-
ment process the supplier uses to be
assured that the product being produced
will be of the desired quality.

While the first approach would be
ideal, and that is the principle behind the
successful Capability Maturity Model®

Integration evaluation strategy, it is not
useful when the supplier has historically
had quality problems or where his current
performance causes concern. In these

Acquiring Quality Software
Watts S. Humphrey

Software Engineering Institute

If you do not insist on getting quality software, you probably will not get it! That is the first principle of software quality. To
get quality software at reasonable costs and on predictable schedules, you must follow the six principles of software quality.
This article describes these principles and discusses how to apply them in software acquisition.

December 2005 www.stsc.hill.af.mil 19

Best Practices

“In the broadest sense, a
quality product is one

that is delivered on time,
costs what it was

committed to cost, and
flawlessly performs all of
its intended functions.”

SM SEI is a service mark of Carnegie Mellon University.

Best Practices

cases, you are left with the second choice:
to monitor the development work. To do
this, you must consider the second princi-
ple of quality management.

Quality Principle No. 2
To produce quality products consistently,
developers must manage the quality of
their work.

Managing Product Quality
While you may want a quality product, if
you have no way to determine the prod-
uct’s quality until after you get it, you will
not be able to pressure the supplier to do
quality work until it is too late. The best
time to influence the product’s quality is
early in its development cycle where you
can determine the quality of the product
before it is delivered and influence the way
the work is done. At least you can do this
if your contract provides you the needed
leverage.

This, of course, means that you must
anticipate the product’s quality before it is
delivered, and you must also know what to
tell the supplier to do to assure that the
delivered product will actually be of high
quality. Therefore, the first need is to pre-
dict the product’s quality before it is built.
This is essential, for if you only measure
the product’s quality after it has been built,
it is too late to do anything but fix its
defects. This results in a defective product
with patches for the known defects.
Unless you have an extraordinarily effec-
tive test and evaluation system, you will
not then know about most of the prod-
uct’s defects before you accept the prod-
uct and pay the supplier.

While you might still have warranties
and other contract provisions to help you
recover damages, and you might still be
able to require the supplier to fix the prod-
uct’s defects, these contractual provisions
cannot protect you from getting a poor
quality product. Because most suppliers
are adept at avoiding liability for defects,
you have not gained very much by con-
tracting for quality. To get the benefits of
including quality provisions in your con-
tracts, you must determine the likely qual-
ity of the product during development.

Identifying Quality Work
To determine the likely quality of a prod-
uct while it is being developed, we must
consider the third principle of quality
work.

Quality Principle No. 3
To manage product quality, the developers
must measure quality.

To monitor product quality before

delivery you must measure quality during
development. Further, you must require
that the developers gather quality meas-
urements and supply them to you while
they do the development work. What
measures do you want, and how would
you use them? This article suggests a
proven set of quality measures, but first,
to define these measures, we must consid-
er what a quality product looks like.

While software experts debate this
point, every other field of engineering
agrees on one basic characteristic of qual-
ity: A quality product contains few, if any,
defects. In fact, the SEI has shown that
this definition is equally true for software.
We also know that software professionals
who consistently produce defect-free or
near defect-free products are proud of
their work and that they strive to remove
all the product’s defects before they begin
testing. Low defect content is one of the
principal criteria the SEI uses for identify-
ing the quality of software products.

Defining Process Quality
To define the needed quality measures, we
must consider the fourth quality principle.

Quality Principle No. 4
The quality of a product is determined by
the quality of the process used to develop
it.

This implies that to manage product
quality, we must manage the quality of the
process used to develop that product. If a
quality product has few if any defects, that
means that a quality process must produce
products having few if any defects. What
kind of process would consistently pro-
duce products with few if any defects?
Some argue that extensive testing is the
only way to produce quality software, and
others believe that extensive reviews and
inspections are the answer. No single
defect-removal method can be relied upon
to produce high-quality software products.
A high-quality process must use a broad
spectrum of quality management meth-
ods. Examples are many kinds of testing,
team inspections, personal design and
code reviews, design analysis, defect track-
ing and analysis, and defect prevention.

One indicator of the quality of a
process is the completeness of the defect
management methods it employs.
However, because the methods could be
applied with varying effectiveness, a sim-
ple listing of the methods is not sufficient.
So, given two processes that use similar
defect-removal methods, how could you
tell which one would produce the highest
quality products? To determine this, you
must determine how well these defect-

removal methods were applied. That takes
measurement and analysis.

The Filter View of
Defect-Removal
This leads us to the next quality principle.

Quality Principle No. 5
Since a test removes only a fraction of a
product’s defects, to get a quality product
out of test, you must put a quality product
into test.

This principle also applies to every
defect-removal method, from reviews and
inspections, through all the tests and other
quality verification methods. Every defect-
removal method only removes a fraction
of the defects in the product; so to under-
stand the quality of a development
process, you must understand the effec-
tiveness of the defect-removal methods
that were used. Further, to predict the
quality of the delivered product, you must
measure the effectiveness of every defect-
removal step.

This also means that the highest quali-
ty development process would be the one
that removed the highest percentage of
the product’s defects early in the process
and then had the lowest number of
defects in final testing. Finally, this means
that the highest-quality products are those
with the fewest defects on entry into the
final stage of testing.

Criteria for a Quality Process
To evaluate a process, you must measure
that process and then compare the meas-
ures with your criteria for a quality
process. This means that you must have
criteria that define what a quality process
looks like. From the filter view of defect
removal shown in Figure 1, we see that
defect removal is like removing impurities
from water [1]. To get water that is pure
enough to drink, we should find progres-
sively fewer impurities in each successive
filtration step. Finally, if we were going to
actually drink the water ourselves, we
would not want to find any impurities in
the final filtration step.

In effect, this means that the last filtra-
tion step is really used to verify the quality
of the water produced by the prior stages.
If there were any significant impurities,
you would want to put that water through
the entire filtration process again, starting
from the very beginning. Then you might
be willing to take a drink. Similarly, for a
software system, this suggests three quali-
ty criteria.
1. Most of the defects must be found

early in the development process.

20 CROSSTALK The Journal of Defense Software Engineering December 2005

Acquiring Quality Software

2. Toward the end of the process, fewer
defects should be found in each suc-
cessive filtration stage.

3. The number of defects found in the
final process stages must be fewer than
some predefined minimum.

Determining Process Quality
While these sound like appropriate
process-quality criteria, they have one
major failing – you will not have complete
defect data until the end of the process
after the product has been built, tested,
accepted, and used. During the process
you will only know the number of defects
found so far and not the number to be
found in future stages. This is a problem
because a low number of defects in a
defect-removal stage could be because the
product was of high quality, because the
defect-removal stage was improperly per-
formed, or because the defect data on that
stage were incomplete. This means that
you must have multiple ways to determine
the effectiveness of a defect-removal stage
and that these ways must include at least
one way to evaluate the effectiveness of
that stage at the time that it is actually
enacted. Partial defect data can be used to
do that. In fact, without these data, there
is no way to determine the effectiveness of
the defect-removal stages.

The three things we can measure
about a process stage are: (1) the time the
developers spent in that stage, (2) the
number of defects removed in that stage,
and (3) the size of the product produced
by that stage. Then, using historical data,
you could compare the data for any type
of defect removal stage with like data for
similar stages from previously completed
projects. As long as you had comparable
data for completed projects, you could see
what an effective review, inspection, or
test looks like. You could then determine
the quality of each stage of the current
project and either agree that the supplier
proceed or repeat some prior phases until
the quality criteria were met.

In-Process Quality Measures
From data on 3,240 Personal Software
ProcessSM (PSPSM) exercise programs writ-
ten by experienced software developers,
the SEI has determined the characteristics
of a high-quality software process [1].
These data are shown in Table 1, and they
show that developers inject about 2.0
defects per hour during detailed design
and find about 3.3 defects per hour during
detail-level-design reviews (DLDR).

To find the defects injected in one
hour of design work, the average develop-
er would have to spend 60*2/3.3 = 36

minutes reviewing that design. Similarly,
since developers inject an average of
about 4.6 defects per hour during coding
and find about 6.0 defects per hour in
code reviews, this same average developer
should spend about 60*4.6/6 = 46 min-
utes reviewing the code produced in each
hour. Since there is considerable variation
among developers, the SEI has established
the general guideline that developers per-
sonally spend at least half as much time
reviewing design or code quality as they
spent producing that design or code.

Further, from data on many programs,
we have found that, when there are fewer
than 10 defects found while compiling
each 1,000 lines of code and fewer than
5.0 defects found while unit testing each
1,000 lines of code, that program is likely
to have few if any remaining defects [2].
Combining these criteria with an addition-
al requirement that developers spend at
least as much time designing a program as
they spent coding it, gives the following
five software process quality criteria [1].

Calculating the Quality Profile
The quality profile has five terms that are
derived from the data shown in Table 1.
The equations for these terms are as fol-
lows.
1. Design/Code Time = Minimum(de-

sign time/coding time: 1.0).
2. Design Review Time = Minimum(2*

design review time/design time: 1.0).
3. Code Review Time = Minimum(2*

code review time/coding time: 1.0).
4. Compile Defects/KLOC = Minimum

(20/(10 + compile defects/KLOC):
1.0).

5. Unit Test Defects/KLOC = Minimum
(10/(5 + unit test defects/KLOC):
1.0).
To derive the five profile terms, con-

sider formula No. 3 for code reviews.
According to Table 1, in one hour of cod-
ing, a typical software developer will inject
4.6 defects. Since this developer can find
and fix defects at the rate of 6.0 per hour,
he or she needs to spend 4.6/6.0 = 0.7667
of an hour, or about 46 minutes, review-
ing the code produced in one hour. Since
there is wide variation in these injection
and removal rates, and since the number
0.7667 is hard to remember, the SEI uses
0.5 as the factor. Based on experience to

date, this has proven to be suitable. Since
these parameter values are sensitive to
application type and operational criticality,
we suggest that organizations periodically
analyze their own data and adjust these
values accordingly.

The formula for the code review pro-
file term compares the ratio of the actual
time the developer spent reviewing code
with the actual time spent in coding. If
that ratio equals or is greater than 0.5, then
the criteria are met. The factor of 2 in the
equation is used to double both sides of
this equation so it compares twice the
ratio of review to coding time with 1.0.
Also, to get a useful quality figure of
merit, we need a measure that varies
between 0 and 1.0, where 0 is very poor
and 1.0 is good. Therefore, the equation’s
value should equal 1.0 whenever 2 times
the code review time is equal to or greater
than the coding time and be progressively
less with lower reviewing times. This is the
reason for the Minimum function in each
equation, where Minimum(A:B) is the
minimum of A and B. A little calculation
will show that this is precisely the way
equation No. 3 works. Equations No. 1
and No. 2 work in exactly the same way
(except design time should equal or exceed
coding time in equation No. 1).

To produce equations No. 4 and No. 5,
the SEI used data it has gathered while
training software developers for TSP

December 2005 www.stsc.hill.af.mil 21

ering Process

Table 1. Defect Injection and Removal Rates (3,240 PSP Programs)

Phase Hours Defects Injected Defects Removed Defects/Hour
Design 4,623.6 9,302
DLDR 1,452.7 4,824
Code 4,159.6 19,296
Code Review 1,780.4 10,758

Figure 2: Process Quality Profile (Six Programs)

PQI = 0.97 PQI = 0.88 PQI = 0.71

PQI = 0.59 PQI = 0.15 P

Test defects = 0 Test defects = 0 Test defects = 0

Test defects = 0 Test defects = 1 Test defects = 3

Quality Profile for Assembly 1

Design
Review
Time

Code
Review
Time

Design/Code Time

Unit Test
Defects/KLOC

Compile
Defects/KLOC

 1
0.8
0.6
0.4
0.2
 0

Quality Profile for Assembly 2

Design/Code Time

Design
Review
Time

Code
Review
Time

Unit Test
Defects/KLOC

Compile
Defects/KLOC

Q

1
0.8
0.6
0.4
0.2
 0

Quality Profile for Assembly 4

Design/Code Time
 1
0.8
0.6
0.4
0.2
 0

Design
Review
Time

Code
Review
Time

Unit Test
Defects/KLOC

Compile
Defects/KLOC

Quality Profile for Assembly 5

Design/Code Time
 1
0.8
0.6
0.4
0.2
 0

Design
Review
Time

Code
Review
Time

Unit Test
Defects/KLOC

Compile
Defects/KLOC

D

Phase
Yield

Defect
Removal

Phase

Development
Injects
Defects

Defect
Injection

Phase

Development
Injects
Defects

Phase
Yield

Phase
Yield

Development
Injects
Defects

%

%

%

Process
Yield

%

Figure 1: The Defect-Removal Filtering Process

ering Process

Table 1. Defect Injection and Removal Rates (3,240 PSP Programs)

Phase Hours Defects Injected Defects Removed Defects/Hour
Design 4,623.6 9,302 2.0
DLDR 1,452.7 4,824 3.3
Code 4,159.6 19,296 4.6
Code Review 1,780.4 10,758 6.0

Test defects = 0 Test defects = 0 Test defects = 0

T

Quality Profile for Assembly 1

D

Quality Profile for Assembly 2

D

Quality Profile for Assembly 3

Phase
Yield

Defect
Removal

Phase

Development
Injects
Defects

Defect
Injection

Phase

Development
Injects
Defects

Phase
Yield

Phase
Yield

Development
Injects
Defects

%

%

%

Process
Yield

%

Table 1: Defect Injection and Removal Rates (3,240 PSP Programs)

Best Practices

teams. It found that when more than
about 10 defects/thousand lines of code
(KLOC) were found in compiling, pro-
grams typically had poor code quality in
testing, and when more than about five
defects/KLOC were found in initial (or
unit) testing, program quality was often
poor in integration and system testing.
Therefore, we seek an equation that will
produce a value of 1.0 when fewer than 10
defects/KLOC are found in compiling,
and we want this value to progressively
decrease as more defects are found. A lit-
tle calculation will show that this is pre-
cisely what equation No. 4 does. Equation
No. 5 works the same way for the value of
five defects/KLOC in unit testing.

One of the great advantages of these
five criteria is that they can be determined
at the time that process step is performed.
Therefore, at the end of the design review
for example, the developer can tell if he or
she has met the design-review quality cri-
teria. By plotting these five values on radar
charts like those shown in Figure 2, it is
relatively easy to identify a program’s qual-
ity problems. The evaluation of these six
profiles is as follows:
1. An excellent quality profile.
2. A similarly excellent quality profile.
3. A generally good quality profile with

slightly too little design review time.
4. The design review measure is low, indi-

cating potential problems that should
be corrected with a repeated design
review.

5. This product has a serious design
review problem coupled with a unit
testing problem. It should be re-
inspected. This product, when later
tested had one defect found in final
testing.

6. This product has serious design prob-
lems and an inadequate code review
and should be replaced. This product

had three defects found in subsequent
testing.
Since these measures can all be avail-

able before integration and system test
entry, and since they can be calculated for
every component part of a large system,
they provide the information needed to
correct quality problems well before prod-
uct delivery.

The Process Quality Index
For large products, it is customary to com-
bine the data for all components into a
composite system quality profile. Since the
data for a few poor quality components
could then be masked by the data for a
large number of high quality components,
it is important to have a way to identify
any potentially defective system compo-
nents. The process quality index (PQI)
was devised for this purpose. It is calculat-
ed by multiplying together the five com-
ponents of the quality profile to give a
value between 0.0 and 1.0. Then the com-
ponents with PQI values below some
threshold can be quickly identified and
reviewed to see which ones should be re-
inspected, reworked, or replaced.

Experience to date shows that, with
PQI values above about 0.4, components
typically have no defects found after
development. Since the quality problems
for large systems are normally caused by a
relatively small number of defective com-
ponents, the PQI measure permits acqui-
sition groups to rapidly pinpoint the likely
troublesome components and to require
they be repaired or replaced prior to deliv-
ery. Once organizations have sufficient
data, they should reexamine these criteria
values and make appropriate adjustments.

Doing Quality Work
Since few software development groups
currently gather the data required to use

modern software quality management
practices, we must consider the sixth prin-
ciple of software quality.

Quality Principle No. 6
Quality products are only produced by
motivated professionals who take pride in
the quality of their work.

Because the measures required for
quality management must be gathered by
the software professionals themselves,
these professionals must be motivated to
gather and use the needed data. If they are
not, they will either not gather the data or
the data will not be very accurate.
Experience shows that developers will
only be motivated to gather and use data
on their work if they use the data them-
selves, and if they believe that the prac-
tices required to consistently produce
quality software products will help them
do better work. Most developers who
have used the TSP believe these things,
but without proper training very few
developers will.

While these measures and quality prac-
tices are not difficult, they represent a sig-
nificant behavioral change for most prac-
ticing software professionals and their
management. There are, however, a grow-
ing number of professionals who do prac-
tice these methods, and the SEI now has
a program to transition these methods
into general practice [1]. The methodolo-
gy involved is the PSP, and to consistently
use the PSP methods on a project, devel-
opment groups must use the TSP. There is
now considerable experience with these
methods, and it shows that with proper
use TSP teams typically produce defect-
free or nearly defect-free products at or
very close to their committed costs and
schedules [2, 3, 4, 5].

Acquisition Pointers
Sound quality management is the key to
software quality; without appropriate qual-
ity measures, it is impossible to manage
the quality of a process or to predict the
quality of the products that process pro-
duces. The developers must gather and
analyze these data; they will not do this
unless they know how to gather and how
to use these data. This is why the sixth
quality principle is critically important.
Merely ordering the organization to pro-
vide the desired data will guarantee getting
lots of numbers that are unlikely to be
useful unless quality principle No. 6 is
met. This requires motivating develop-
ment management, and having develop-
ment management train and motivate the
developers in the needed quality measure-
ment and management practices.

22 CROSSTALK The Journal of Defense Software Engineering December 2005

Design 4,623.6 9,302 2.0
DLDR 1,452.7 4,824 3.3
Code 4,159.6 19,296 4.6
Code Review 1,780.4 10,758 6.0

Figure 2: Process Quality Profile (Six Programs)

PQI = 0.97 PQI = 0.88 PQI = 0.71

PQI = 0.59 PQI = 0.15 PQI = 0.04

Test defects = 0 Test defects = 0 Test defects = 0

Test defects = 0 Test defects = 1 Test defects = 3

Quality Profile for Assembly 1

Design
Review
Time

Code
Review
Time

Design/Code Time

Unit Test
Defects/KLOC

Compile
Defects/KLOC

 1
0.8
0.6
0.4
0.2
 0

Quality Profile for Assembly 2

Design/Code Time

Design
Review
Time

Code
Review
Time

Unit Test
Defects/KLOC

Compile
Defects/KLOC

Quality Profile for Assembly 3

 1
0.8
0.6
0.4
0.2
 0

1
0.8
0.6
0.4
0.2
 0

Design/Code Time

Design
Review
Time

Code
Review
Time

Unit Test
Defects/KLOC

Compile
Defects/KLOC

Quality Profile for Assembly 4

Design/Code Time
 1
0.8
0.6
0.4
0.2
 0

Design
Review
Time

Code
Review
Time

Unit Test
Defects/KLOC

Compile
Defects/KLOC

Quality Profile for Assembly 5

Design/Code Time
 1
0.8
0.6
0.4
0.2
 0

Design
Review
Time

Code
Review
Time

Unit Test
Defects/KLOC

Compile
Defects/KLOC

Design/Code Time
 1
0.8
0.6
0.4
0.2
 0

Design
Review
Time

Code
Review
Time

Unit Test
Defects/KLOC

Compile
Defects/KLOC

Quality Profile for Assembly 6

P

Figure 2: Process Quality Profile (Six Programs)

Acquiring Quality Software

Once the developers regularly gather,
analyze, and use these data, there only
remains the question of how acquisition
executives can get and use the data. This is
both a contracting and a customer-suppli-
er issue. Experience to date shows that
when the developers use the TSP, you
should have no trouble getting the
required data [2, 3, 4, 5, 6, 7, 8].

The specific data needed to measure
and manage software quality are the fol-
lowing:
1. The time spent in each phase of the

development process. These times
must be measured in minutes.

2. The number of defects found in each
defect-removal phase of the process,
including reviews, inspections, compil-
ing, and testing.

3. The sizes of the products produced by
each phase, typically in pages, database
elements, or lines of code.
Planned and actual values are needed

for these items, and these data should be
for the smallest modules and components
of the system. To establish and maintain
the required management and developer
motivation, these quality measurement
and management requirements must be
addressed both contractually and through
management negotiation.

Conclusions
Poor quality performance damages a soft-
ware development organization’s cost and
schedule performance and produces trou-
blesome products. For acquirers to have a
reasonable chance of changing the cost
and schedule performance of their soft-
ware vendors, they must demand effective
quality management. The six principles of
software quality reviewed in this article
should help them do this.

By following these six principles and
requiring suppliers to do so as well, you
can consistently obtain quality software-
intensive products at or very near to their
committed costs and schedules.u

References
1. Humphrey, Watts S. PSP: A Self-

Improvement Process for Software
Engineers. Reading, MA: Addison-
Wesley, 2005.

2. Grojean, Carol A. “Microsoft’s IT
Organization Uses PSP/TSP to
Achieve Engineering Excellence.”
CrossTalk Mar. 2005 <www.stsc.
hill.af.mil/crosstalk/2005/03/0503
Grojean.html>.

3. Davis, Noopur, and J. Mullaney.
“Team Software Process (TSP) in
Practice.” Technical Report CMU/
SEI-2003-TR-014. Pittsburgh, PA:

Software Engineering Institute, Sept.
2003.

4. Humphrey, Watts S. Winning with
Software: An Executive Strategy.
Reading, MA: Addison-Wesley, 2002.

5. Humphrey, Watts S. TSP: Leading a
Development Team. Reading, MA:
Addison-Wesley, 2006.

6. Rickets, Chris A. “A TSP Software
Maintenance Life Cycle.” CrossTalk
Mar. 2005 <www.stsc.hill.af.mil/cross
talk/2005/03/0503Rickets.html>.

7. Trechter, Ray, and Iraj Hirmanpour.
“Experiences With the TSP Technol-
ogy Insertion.” CrossTalk Mar.
2005 <www.stsc.hill.af.mil/crosstalk/
2005/03/0503Trechter.html>.

8. Tuma, David, and David Webb.
“Personal Earned Value: Why Projects
Using the Team Software Process
Consistently Meet Schedule Commit-
ments.” CrossTalk Mar. 2005
<www.stsc.hi l l .af.mil/crosstalk/
2005/03/0503Tuma.html>.

December 2005 www.stsc.hill.af.mil 23

About the Author

Watts S. Humphrey
joined the Software En-
gineering Institute (SEI)
of Carnegie Mellon Uni-
versity after retiring from
IBM in 1986. He estab-

lished the SEI’s Process Program and led
development of the Software Capability
Maturity Model®, the Personal Software
ProcessSM, and the Team Software
ProcessSM. During his 27 years with IBM,
he managed all of IBM’s commercial
software development and was vice pres-
ident of Technical Development. He is
an SEI Fellow, an Association for
Computing Machinery member, an
Institute of Electrical and Electronics
Engineers Fellow, and a past member of
the Malcolm Baldrige National Quality
Award Board of Examiners. He has
published several books and articles and
holds five patents. In a White House cer-
emony, the president recently awarded
him the National Medal of Technology.
He has graduate degrees in physics and
business administration.

Software Engineering Institute
4500 Fifth AVE
Pittsburgh, PA 15213-2612
Phone: (412) 268-6379
Fax: (412) 268-5758
E-mail: watts@sei.cmu.edu

January 4-7
Hawaii International Conference

on System Sciences
Kauai, HI

www.hicss.hawaii.edu/HICSS39/apa
home39.htm

January 8-10
IEEE Consumer Communications and

Networking Conference
Las Vegas, NV

www.ieee-ccnc.org/ index.htm

January 8-11
Internet, Processing, Systems, and

Interdisciplinaries (IPSI) USA 2006
Palo Alto, CA

www.internetconferences. net/
california2006/index.html

January 11-13
The 33rd Annual Symposium on

Principles of Programming Languages
Charleston, SC

www.cs.princeton.edu/
~dpw/popl/06

February 6-9
Components for Military and Space

Electronics Conference and Expo
Los Angeles, CA

www.cti-us.com/ucmsemain.htm

February 13-17
The Fifth International Conference on

COTS-Based Software Systems
Orlando, FL

www.iccbss.org/2006

February 14-16
The International Association of Science

and Technology for Development
Conference on Software Engineering

Innsbruck, Austria
www.iasted.org/conferences/2006/

Innsbruck/se.htm

May 1-4, 2006
2006 Systems and Software

Technology Conference

Salt Lake City, UT
www.stc-online.org

COMING EVENTS

